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SCIF e—-Guns, Ion Input, and Controlled Operation

e-GUNS

The e-guns acquired for and used on the SCIF experiment have hot
cathode electron emission sources. We have been told! that their current-
voltage emission characteristics will follow the {usual) Richardson emmission
scaling with voltage of

I, = Nk E? (1)

(N, = number of guns used), and that they are supposed to put out I, = 25.0 A
current per gun, at E = 25.0 keV, nominal voltage. These design numbers yield
an output scaling coefficient of k, = 6.32E-6 for E in eV and I, in A.

Now, as pointed out since early May, 19912 (in meetings held at SAN and in
subsequent memos), the EKXL and GJ codes have shown clearly that the SCIF
machine operated with an e-gun voltage of E = 22.5 * 2.5 keV can reach a core
density of ca. n. = 1E12/cm? in the MR mode only if ion input is at the machine
edge (r = R) along cusp lines, and if repellers of a, = 0.9 effectiveness are used.

However, as also shown previously (see Figures la, 1b), to go beyond this
density along the W = E/(B‘,R)2 line set by the limiting E, B,, R values of the
SCIF design (W = 3E-4 keV/(kGcm)?; E = 25 keV, B, = 3.1 kG, R = 92 cm) requires
vast increases in electron drive current, to a maximum of about I, = 18,000 A,
before reaching the "runaway"”" unstable portion of the G; vs. Z parameter space
that defines the system operating regime.

As we presented at the DARPA review meeting on July 30, 1991, and
provided earlier in writing?, a much easier path to high density and reactor-like
behavior can be found by operation at HIGH W such that the beta = 1 (<rp>=1)
line is reached at G j hear unity - i.e. as an almost non-magnetic electrostatic
confinement machine. This would test the WB mode physics of interest, rather
than the MR mode physics of no intrinsic interest to the Polywell*® concept.

EKXL code calculations and parallel phenomenological modelling analyses
show that this sort of operation will require a current drive whose relationship
to electron energy follows a different scaling law than that of the present SCIF
e-guns. The <ry>=1 line Mfound to be reached in the WB mode by operation
with a drive current related to voltage by the approximate formula I, = 10E}/2,
The value of W that corresponds to <r,>=1 at G; = 1 is about 20 keV/(kGcm)?,
thus E = 2!:':-2(B¢,R)2 gives the drive voltage allowed for a given (B,R) product
value, where units are E = eV, B, =G, R = cm.

or
1f the SCIF guns are driven hard enough, to higher voltage, their 0
effective impedance @, will drop; 2, = E/I = 1/k,E!/2, It is then of interest to 0

determine at what voltage the SCII-' guns can match the requirements of the
<rp>=1 line. To find this, set the two scaling laws for electron current equal to
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I, = Nk E*2 = 10E!/2 (2)

which yields N,E = 1.6E6 eV. If N, = 6 (maximum number of square faces on
SCIF) then E = 266.7 keV is required. This voltage level requires a total current
of ca. I, = 5200 A and a drive power of P = 1.4E9 W; impossibly beyond the
capabilities of the SAN equipment, facility, or of SDG&E.

What is needed is e-guns of low impedance. Reformulating the scaling in
terms of gun impedance it is easy to show that the critical drive voltage for
guns that behave as E3/2 emitters will be given by

Erie = 2672, ' (3)

for six guns with E. ;. in eV and Q, in ohms. If @, = 1 ohm, then E = 267 V, etc.
The power level of this last example is only about P = NSI,E = 240 kW, within
reach of a practical drive power supply. What is needed is low impedance guns;
without these little progress can be made.

More detailed and exact calculations of these features and requirements
for WB operation are given in the table shown in Figure 2, and in the graphs of
Figures 3 and 4. These calculations are based on more exact formulations of the
problem than that given above, as derived and discussed in a separate, more
detailed study of WB mode operation.!

Ion Input

In addition, it is essential that the device be started with as low density
background gas as possible, so that background gas will not continue to domi-
nate the device behavior over the short pulse time allowed by the present e-gun
drive power supply system.> Of course, as noted from the concept’s origin®:’?,
good control of ion input is also essential.

Ion input is favored at or near the edge, but along a cusp or funny
vertex line, and it must be controlled within a factor of 3-4x or so, on well
depth®, to follow the rise in electron current once the well is established. Initial
deflection of ions by the B field will be small at conditions of large W, when B is
kept low, and when the ions are put in on cusp axes, and slightly inside the
maximum field point. Even with higher fields, the transverse ion deflection can
be kept within tractable limits, if diamagnetic effects do function, down to some
reasonable values of W fﬂexperimenta] purposes.’ Thie type of ion input and
contro] can be used to obtain successful convergence of ion flow in the potential
well established by the e-gun drives. The e-guns also must be driven controll-
ably so that current can be reduced as ion current falls, without internal arcing
or arbitrary shutoff, if the device operating conditions are to be achieved.

Controlled Operation
Finally, it should be noted that a proper experimental machine, able to
test the basic features of the concept, should be able to be operated in a

steady-state mode, as the concept has always been a steady-state device.
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Indeed, the "adiabatic time~dependence” of the EKXL code simply calculates
distributions et al for a steady, stable operating condition of the system.
"Steady-state” here means over time periods very long compared to the electron
AND ion lifetimes in the system.

In such a steady-state system, full control of ion and electron input is re-
quired, as above, so that adjustments can be made in real-time of these drive
and balancing inputs. The present arrangement of equipment for the SCIF
experiment does not permit this, and it can be achieved ONLY by the acquisition
of new sources (and associated power supplies) of different character than
those now pursued for electrons and ions. . And this requires new money (as
" planned in the original program) for the proper equipment.

A general summary of the differences between the fusion system concept
and the current SCIF experiment is given in Figure 5. The origins of the
difficulties experienced in proving concept viability with SCIF, as currently
constructed, are evident from the comparison given in this figure. Parentheti-
cally, it must be noted that almost all of the differences are the result of choices
made under extreme budget pressure due to the DARPA-directed cutback of
funds made early in the program.

Pulsed operation using background ions or neutral gases can not be used
as a practical means of starting the system, although some specially set up
experiments may be able to circumvent the inherent flaws in this approach. IF
the system were steady-state, then it COULD be started successfully from a
neutral gas background state, for continued electron drive would eventually
ionize and burn out the background, leaving only those ions that are able to be
trapped in the well. From this point in time, the ion input could be started
under anode height control, as described above, to run the system. With this
mode of operation, the degree of initial background gas would not matter to
eventual steady operation, and the extreme difficulties associated with the
present pulsed experiment would not appear. But, again, such a test system
‘must await the acquisition of additional new money to support the further
theoretical analysis, modelling design, and device development for the full
experimental program required.
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